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Do Human Chromosomal Bands 16p13 and 22q11-13
Share Ancestral Origins?

To the Editor:
Ancient duplications and rearrangements within a ge-
nome are believed to be important mechanisms of
evolution. Although most duplications are of gene seg-
ments, single genes, or chromosomal segments, mo-
lecular evidence has been gathered suggesting that
whole-genome duplication has facilitated evolution in
yeast (Wolfe and Shields 1997). Identifying these dupli-
cated genomic areas can be valuable not only for un-
derstanding the timing and nature of evolutionary
events; additionally, this information can greatly facili-
tate the pinpointing of novel (disease-related) genes by
positional cloning techniques.

While mapping and cloning the human gene encod-
ing the CREB-binding protein (CBP, encoded by the
CREBBP gene) on chromosome band 16p13.3 (Giles et
al. 1997b), we noticed an emerging pattern concerning
the genomic relationship between this chromosome band

and a region of chromosome 22q. CBP exhibits extensive
homology to the adenovirus E1A–associated protein
p300, whose gene has been mapped to human chro-
mosome band 22q13 (Eckner et al. 1994; Lundblad et
al. 1995). At that time we noted with interest that the
heme oxygenase-1 (HMOX1) gene, just centromeric of
CREBBP on 16p13.3, has a paralogue mapping to chro-
mosome band 22q12, heme oxygenase-2 (HMOX2;
Kutty et al. 1993). Our interest was further piqued when
the molecular defect in families with carbohydrate-de-
ficient glycoprotein type I syndrome (CDG1) was de-
termined to be caused by mutations in the phospho-
mannomutase 2 gene (PMM2) on 16p13 (Matthijs et al.
1997a); the same investigators had previously mapped
the first phosphomannomutase gene (PMM1) to 22q13
(Matthijs et al. 1997b). Sequence comparison at the
amino acid level revealed that homologies between these
paralogous proteins are high: homology between CBP
and p300 is 63% (Arany et al. 1995), that between
PMM1 and PMM2 is 66% (Matthijs et al. 1997a), and
that between HMOX1 and HMOX2 is 74% (authors’
observation). Subsequent examination of genome da-
tabases (e.g., OMIM) resulted in six additional sets of
paralogues mapping to chromosomes 16p13 and 22q11-
13, although the extent of homology between these par-
alogue sets is not known (table 1). YAC contigs con-
necting outlying genes of each paralogous cluster,
CREBBP to MYH11 on chromosome 16 and the CRYB
genes to PMM1 on chromosome 22, suggest that the
extent of the redundant area presented here is ∼12–14
Mb. Furthermore, CREBBP and MYH11 are also
thought to be near the borders for the conserved synteny
group in mouse chromosome 16 (Doggett et al. 1996).

We propose that the existence of these paralogous sets
suggests that chromosome bands 16p13 and 22q11-13
share ancestral origins and that at some point a large-
scale duplication gave rise to this second set of genes. It
is well established that such duplicated regions exist
(Lundin 1993; Holland et al. 1994), and a catalogue of
putative paralogous regions can be found on-line (Da-
tabase of Duplicated Human Chromosomal Regions).
This database suggests two duplicated regions for areas
of 16p: a well-documented gene cluster on chromosome
band 16p11.1, which shares high homology with a locus
on Xq28 (Eichler et al. 1996), and a region of 16p13,
which resembles 19p13, although no specific genes are
named.

A hypothesis set forth by Ohno (1993) suggests that
at the stage of fish, the mammalian ancestral genome
underwent tetraploid duplication. Although certain as-
pects of this hypothesis are not universally accepted,
most scientists agree that the fourfold increase, in
the number of genes, between invertebrates and
vertebrates implies at least two rounds of genome du-
plication (Aparicio 1998). Paralogues such as the HOX-
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Table 1

Paralogous Genes Mapped to Chromosome Bands 16p13
and 22q11-13

PARALOGUES

Gene/Chromosomea Gene /Chromosome DESCRIPTION

SSTR5/16p13.3 SSTR3/22q13.1 Somatostatin receptors
CREBBP/16p13.3 p300/22q13 Transcriptional cofactors
CSNK2A1′/16p13.3 CSNK1E/22q12-13 Casein kinase isoforms
UBE2I/16p13.3 UBE2L3/22q11.2-13.1 Ubiquitin-conjugating enzymes
PMM2/16p13.3 PMM1/22q13.1 Phosphomannomutase isoforms
HMOX2/16p13.3 HMOX1/22q12 Heme oxygenase isoforms
MYH11/16p13.13-13.12 MYH9/22q11.2 Myosin heavy-chain subunits
CRYM/16p13.11-12.3 CRYBB1/22q11.2-12.1 Crystallin isoforms

CRYB2/22q11.2-12.2
CRYB3/22q11.2-12.2
CRYBA4/22q11.2-13.1

IL4R/16p12 IL2RB/22q12 Interleukin receptors

a Listed from telomere to centromere

gene clusters, which are situated at four distinct chro-
mosomal loci, bolster this hypothesis. If the gene
redundancy observed on chromosomes 16 and 22 is a
result of Ohno’s proposed ancestral event, then one
might expect that two additional loci exist in the human
genome that shares at least partial homology. CBP and
p300 do, in fact, count two additional protein family
members, p270 (Dallas et al. 1997) and p400 (Barbeau
et al. 1994), although the genes for these proteins have
not yet been mapped. Candidate regions, however, can
be inferred from the literature. For example, clues can
be taken from the somatic translocation t(8;16)
(p11;p13.3), associated with acute myeloid leukemia,
which disrupts the CREBBP gene and fuses it to a gene
on chromosome 8, called “MOZ” (Borrow et al. 1996;
Giles et al. 1997a). Phenotype-identical variants of the
t(8;16) have been described: the t(8;22)(p11;q13), pos-
tulated to fuse p300 to MOZ, as well as t(6;8)
(q27;p11) (Tanzer et al. 1988), t(8;19)(p11;q13.2) (Tan-
zer et al. 1988; Stark et al. 1995), t(8;14)(p11;q11.1)
(Slovak et al. 1991), and t(3;8;17)(q27;p11;q12) (Ber-
theas et al. 1989). If it is assumed that these phenotyp-
ically similar leukemias all fuse MOZ to genes situated
at the breakpoints on chromosome bands 3q27, 6q27,
14q11.1, 17q12, or 19q13.2, then these loci become
good candidates for the p270/p400 genes—and, thus,
for additional redundant clusters. Interestingly, two of
these loci do harbor additional gene-family members
paralogous to those mapping to 16p13 and 22q11-q13
(table 1): the SSTR1, UBE2L1, MYH6, and MYH7
genes map to chromosome bands 14q11-q13, whereas
the SSTR2, CSNK1D, and CRYBA1 genes map to chro-
mosome 17q11-q25. The gene-mapping data coupled
with the leukemia breakpoint locations strongly suggest
that these gene families have arisen by tetrapoidization
with members on chromosomes 14q, 16p, 17q, and 22q.

Genetic redundancy is potentially of great relevance
to organismal evolution, since it may protect organisms
from potentially harmful mutations and may provide a
pool of diverse yet functionally similar proteins for fur-
ther evolution. Transcription factors such as CBP and
p300 are thought particularly to “profit” from redun-
dancy, as demonstrated by recent knockout mouse stud-
ies, which show that the combined dose of CBP and
p300 is essential for survival (reviewed by Giles 1998).
The existence of these duplicated gene clusters is not just
a matter of redundancy; in the cases of CBP/p300 and
PMM1/PMM2, the proteins have been shown to be
functionally divergent. Where in vitro experiments sug-
gest almost complete functional redundancy, CBP and
p300 are clearly not physiologically interchangeable (re-
viewed by Giles et al. 1998); inactivating germ-line mu-
tations of one copy of the CREBBP gene cause the Ru-
binstein-Taybi syndrome (Petrij et al. 1995). Likewise,
mutations in PMM2, but not those in PMM1, result in
CDG1 (Matthijs et al. 1997a; Schollen et al. 1998).
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erstock GC, Döhner H, et al (1997a) Detection of CBP
rearrangements in acute myelogenous leukemia with t(8;16).
Leukemia 11:2087–2096

Giles RH, Peters DJM, Breuning MH (1998) Conjunction dys-
function: CBP/p300 in human disease. Trends Genet 14:
178–183

Giles RH, Petrij F, Dauwerse JG, den Hollander AI, Lushni-
kova T, van Ommen G-JB, Goodman RH, et al (1997b)
Construction of a 1.2-Mb contig surrounding, and molec-
ular analysis of, the human CREB-binding protein (CBP/
CREBBP) gene on chromosome 16p13.3. Genomics 42:
96–114

Holland PW, Garcia-Fernandez J, Williams NA, Sidow A
(1994) Gene duplications and the origins of vertebrate de-
velopment. Dev Suppl 125–133

Kutty RK, Kutty G, Rodriguez IR, Chader GJ, Wiggert B
(1994) Chromosomal localization of the human heme oxy-
genase genes: heme oxygenase-1 (HMOX1) maps to chro-
mosome 22q12 and heme oxygenase-2 (HMOX2) maps to
chromosome 16p13.3. Genomics 20:513–516

Lundblad JR , Kwok RPS, Laurance ME, Harter ML, Good-
man RH (1995) Adenoviral E1A-associated protein p300 as
a functional homologue of the transcriptional co-activator
CBP. Nature 374:85–88

Lundin LG (1993) Evolution of the vertebrate genome as re-
flected in paralogous chromosomal regions in man and the
house mouse. Genomics 16:1–19

Matthijs G, Schollen E, Pardon E, Veiga-Da-Cuhna M, Jaeken
J, Cassiman J-J, van Schaftingen E (1997a) Mutations
in PMM2, a phosphomannomutase gene on chromosome
16p13, in carbohydrate-deficient glycoprotein type I syn-
drome (Jaeken syndrome). Nat Genet 16:88–92

Matthijs G, Schollen E, Pirard M, Budarf ML, van Schaftingen
E, Cassiman J-J (1997b) PMM (PMM1), the human ho-
mologue of SEC53 or yeast phosphomannomutase, is lo-
calized on chromosome 22q13. Genomics 40:41–47

Ohno S (1993) Patterns in genome evolution. Curr Opin Genet
Dev 3:911–914

Petrij F, Giles RH, Dauwerse JG, Saris JJ, Hennekam RC,
Masuno M, Tommerup N, et al (1995) Rubinstein-Taybi
syndrome caused by mutations in the transcriptional co-
activator CBP. Nature 376:348–351

Schollen E, Pardon E, Heykants L, Renard J, Doggett NA,
Callen DF, Cassiman J-J, et al (1998) Comparative analysis
of the phosphomannomutase genes PMM1, PMM2 and
PMM2W: the sequence variation in the processed pseudo-
gene is a reflection of the mutations found in the functional
gene. Hum Mol Genet 7:157–164

Slovak ML, Nemana L, Traweek ST, Stroh JA (1991) Acute
monoblastic leukemia (FAB-M5b) with t(8;14)(p11;q11.1).
Cancer Genet Cytogenet 56:237–242

Stark B, Resnitzky P, Jeison M, Luria D, Blau O, Avigad
S, Shaft D, et al (1995) A distinct subtype of M4/M5 a-
cute myeloblastic leukemia (AML) associated with
t(8;16)(p11;p13), in a patient with the variant t(8;19)
(p11;q13): case report and review of the literature. Leuk Res
19:367–379

Tanzer J, Brizard A, Guilhot F, Benz-Lemoine E, Dreyfus B,
Lessard M, Herchkovitch C, et al (1988) La leucémie aigüe
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How Sib Pairs Reveal Linkage

To the Editor:
The Haseman-Elston (1972) method, widely used for
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